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THE THEORY OF SURFACE WAVE DIFFRACTION BY 

SYMMETRIC CRUSTAL DISCONTINUITIES 

By 

J. Kane 
and 

J. Spence 

buminarv 

A major barrier in comparini' seismic theory with observed wave 

trains, stems from the fact that elastic wave characteristics are in- 

fluenced by discuntinuities along the propagation path, and any 

understanding of such signal corruption would require a knowledge of 

the diffracted fields at the appropriate obstacles.  However, even a 

relatively simple crustal feature such as a discontinuous change in 

terrain presents major difficulties if the relevant problem of 

diffraction in a wedge-shaped region is considered. Although some 

first-order calculations have been made by Lapwoud (1961), Kane and 

^pence (1963), and Hudsim and Knopoff (1963). the theoretical discussion 

of the diffraction effects arc hampered by the intractability of the 

associated boundary value problems.   In this report, we show how one 

can take advantage of symmetry considerations and varutional techni- 

ques to rapidly estimate reflection, transmission, and ojnvcr^ion 

coefficients for elastic wave diffraction at syttr.«Irit wedge-shaped 

obstacles.  In Fart I, we illustrate the ideas by a discussion of the 

vector problem of R,iy!eu,h wave propagation along the faces of an clastic 

wedge with tree boundaries.  In Part 11, we analyze thu scalar problem of 

multi-mode Love wave diffraction in a symmetric layered wedge. 
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HART  1.  RAYLE1ÜH WAVES  ÜN ,VN ELASTIC WEUGE 

i .   t-uruj^nent-H 1   es-al ions 

1'he ire-üorÄ  slu.v.vO   u£  an elastic »ol n.;  Lharacterized by ihe 

La-ic  parameters   ■, n,  and  density  ■'.   can be dei ivcd  t'ro'n a  scalar 

potential  fU.y.z),  and  a vector  potential   *■[ ^(.x.y,z,i .   4 (x.y.z) , 

•'; U.y.z)]  by the  relation 

sdi.v.w) = v-r ♦ v • <r . n.i) 

For two-dimensional motions which are   independent  of  the  z-coordinatc, 

both t  and <r   are but  functions  of  x and y.  or ?  ■ :U,y),  .md »T  ■ »f-tx.v 

Furthemiore, we can neglect pure distortions by setting  ...  ■ ♦    ' u. 

so that  the vector potential     V      •        >r [u. u. -.^x.ylj   is 

characterized by one scalar component  and the Subscript   on  i t can be 

dropped without   contusion.     If wc assme that   the vibrations are 

harmonic, we  can suppress  a t i-»e  factor e' '' .   and   il   can be  shown that 

*,  and      the  z-component  of  the vector potential,  satis'.v the  reduced 

wave equal ions 

7 7 2 2 
(V     ♦  !<"}  7  • U. k    • I   *u) .       < 1.2) 

c c 

■) i i > 
(V    » k )  4 ■ u. k    •  ■  .-'w        .      t: .1' 

Unce  the  potentials I   inci   *  are known,  the displacement   vector  s   is 

Hlven  by (1.1),   and the   resultant  stress dyadic -(7,v)   can be  (;ivcn 
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iii symbolic noLacioti as 

where   3   is  the unity dyadic,   the   idemfacior. 

2,   Ihe  Havlei^h  wave   polontiais 

A lime harmonic Raylcii;h wave,   or R-wave  foi   brevity,   is  com- 

prised  u£  a  pair  of  exponential   solutions   o£   11,2)   and  (1.3), 

,.   m ,.(.*      .j   ),     if  the elastic solid   lies within  the half-space 
R'     K 

y < ü (c£.  Figure la),  then  these solutions,   in  p.'lar coordinates 

x   »  r  cos U,   y  •  r  sin 0,   assume  the   form 

]'K 

^■,'^ 

i; .6) 

■'iwn. i:    the   «.Xp   :ieiU .a!   VlllH.'-n    is   ^IV<.v 

-i(U)     -     ri -U"       V     '        •'  '!>   l'    '     '      'OS   ' 

?iiil       .   i -i,v0   vv )       . ;ii   ii   ' 

(i.D 

,,:,.;   ",   ihr   r.L-.niiuck     :   (ht   r n m   •i   i he   shtar  ;• '.-i' »ei 11.-ICIü 

of   v,    lu  I he   rompres . icna 1   •r.M. 
' 

'1-(V.     V     I 

.'V       ■•    ) 

(..-I 
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and ■■  is  a dimension less  distance  parameter 

--Wr-^-r. ^-^ 

The  paranneters v    and v    represent  the velocities  of   the coropres- r c s 

siünal  and shear body wave^   respectively,     foi   a ^iven Poisson's  ratio 

U.ll) 
21'   ♦ ^ 

one needs choose the hayleigh wave velocity vR, which is less than vs, 

so that the stresses induced by rR and tR vanish at the surface y ■ U 

-; (-R, tR) - 0. y - 0.      (1.12) 

With  this  choice ot   v.r   the CR  and   >R «iven by (1.5)   and  (i.bJ   arc the 

vector and  scalar potent iais  character i z in-.-, a Rayleinh wave  traveinu 

to the  nnhi  with unit   amplitude.   Ue shall   sjKi.ik o(   the  cocfflcieni 

oi   the cwnpressiunal   potential   as  the amplltudeJ.     U   is very con- 

venient  tu note that   we  can  reverse  the direction     :    .ny harr.uni     ..MVC 

bv  the  »pcratim ui   ctwipiex coin.'if.at ion;   thus 

(1.11/ 

K..(.VV 
IR/   -   MK-   ef   l0! 

K 

represents  a Rayleigh wave  iravclim;  in the  opposite direction with 

anipl itudc R. 



3.  Formulation o£  the boundary value  problems 

a.   l'he major  problem 

l"hc conundrum posed by Kaylemh wave dilfraction in a wedge- 

shaped resiOT» is to find additional solutums :d and vd, of <.1.2) and 

(1.3)  which   represent  diffracted  fields   in mtettor of  the wedge 

such that  the stress dyadic       £l»R  ♦ rd.   ,r   '   »^  vanishes   on both 

faces o£   the wedge  for 8-wave excitation  along one  iace.     In  our geom- 

etry,  (cf.  Figure   la),   the R-wave   is   incident   iron  infinity  along the 

negative x-axis.    We  shall  be  principally concerned with calculating 

the complex amplitudes of the reflected and transmitted «-waves as ,i 

function of  the wedge angle  0   and Polsson's  rat:o -.    This   task car. 

be substantially cased by reducing the major  ;>r. !)le • to   i  pair oi 

minor problems   involving even  and oddsymneirics.    Z-nsidcr  the   in- 

cident i^-wave along the   left   wedge  face  to be  the   sum of  two waves, 

each of half amplitude.    Likewise, the absence of any excitation along 

the right wedge  face   is enuivalent  to a  pair oi   In   ident  «-waves along 

It, each of  half  amplitude,  but  opnoscd   in si.-;;,   vcf.  Figure   lb).     Ihe 

four partial R-wavcs can be separated  into two groups:    Fir^t.   i pair 

of ft-waves on either  face of   like  parity which serves  as  the excitation "f 

what wo call  the even umor probiurc. Second, another p.itr   'f  M-waves whose 

amplitudes  arc of  unlike  parity which constitutes  the excimtion of   the 

odd minor  problem.     If we designate  the diffracted   tlelds  oi   the even  and 

odd problems  by the subicripts e and  o respectively,   then since we arc 

dealing with   linear cpations,   the desired •najor  potentials  Z^    and 



;•    can be expressed as a superposition of  the minor  potentials 
d 

d        e        o 

■o 
(1.16) 

and likewise the displacement vector :. = s  < =  can be dccanposed 

into even and odd components. 

b. The even minor problem 

In the even problem, the wedge will suffer only even dis- 

* - 
placements s about the plane of symmetry, and as a result, there can   e 

be no component of normal displacement alon»; the plane of syrmietry 

at 0 »^2  . n.  It follows that the even problem is eqnvalent to 

finding the potentials in a bisected wedge with one fact- free of 

stresses which supports the incident Rayleigh wave, and the other face 

so constrained that the normal displacement vanishes there.  That is, 

wc seek solutions ." and t of (1.2) and (1.3) m a wcdKC of half- 
e    c 

angleÄ^/2 

EVEN 

BCr*?.4+C)"0, 0 « ti (1.17) 
-  R   e' r   e 

i .d. (; .  .  )t ±.  t|| + .j ) . o   o - 0 '2 ■ n       C1.18) 
r <)U  R   c' or "R   C 

c. The odd minor problem 

By the same arguments, the odd problem which involves r . to 

is a complement arv version in the bisected wedne, wherein the tanacntlal 

N.B. The displacements, and the compressional potential will be even 

about the plane of symmetry, but the shear potential will be an odd 

function, and vi■o versa for the odd problem. 



-7- 

displacements must  vanish   identically  aioni; the  plane oi  syiraiL'i ry,   i.e., 

11.19) 
R ii       K o 

ODD 

d r    ' H o r  i)U      R o 

0   '  ii 

Ü   • S  2-n     C1.2U} 

d.   Th«.-  Reflect UT. C\ieM loicn'-^ 

Fur  either  the even  or  •he   odd  prublfeT,   the  .soluiiun will   contain 

a  reflected Kayieuh wave.     Let   .   K&H,   ~)  and       ((9 2,   •-»   be the  com- 

plex  ratios  of   the   refU-'cd   tu the   incident   h,.vieu;h wave  anplitude 

for the eve-  and  odd minor  problems   m  the  hisected wed^c.    The  re- 

flection  cocffioienl  •<*.&,-  >   i>jr the  original   iv.ajur  problem will   be 

R( (9,-1 .   [     I ^ -'.")   '        (6 y-'.oi. f.\.>\) 

id   ISkCwiiL-   i he   ovt-Mi:   t ran.-imiss lun   rot'l t U ie;i <fy .        will   Ix 

ra^.-i .       I. 
e 

.'-•'  .' (9; •'. ■' J • t!.2.') 

Korraula.-   '.'..Zi)    >nd   ■ i ..'.'i     a;-, he venl'ieil  ' ••   i   .    ■ . <-   at   Fn'.urc   lb 

which   indicates   • Mai   the   overall   rclle. • .m       uf-iricn-   H   rebuts 

from a  superposition o(   the  partial   reflation  .:<^f £ u ivnts   -.(T.^  sj 

and  the  trnnsmiss mn  cocif icU-n'.   '■   f TCT.. i,i<: ir   nucriereMCc   .Ue-   . J • 

L>'  The Var tat iut.il   = r ■;•. ijj'Le 

a,   I) i acuss i o". 

Varlatvonil   prw :■, .K.n i   consist   of  a-Minn»;   i  suitable  trial 

function  containm.-, un.pccified ciefti^iems.   and  (hen  ch.n).sinj; these 
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parameters to minimize certain quantities. One major advantage of 

the variational method is that first-order accuracy in the trial 

function usually gives results which are accurate to second-order, 

because of the stationary character of the approximation. 

A natural aperture in the present problem is the plane of 

synroetry   and we can assume it to be illuminated by an incident 

8-wave, and a reflected one with an adjustable amplitude.  In the 

even problem, the net ani;ular displacement must vanish alonR the plane 

of synretry. A unit R-wave traveling to the right gives rise to the 

angular cooponent of the displacement 

^[ie* '^ 3. 11.23) >nc  ,  r ',:> _     _9 

and  likewise an .'-wave ot   amplitude c   moving to the  left   generates  the 

disturbance 

-    sref -        U"V U.2M 
e    0 e     ü 

which apart from an ampltiude factor Is the complex conjugate of (1.21). 

Only If there is no  discontinuity, nr i! <S/* " can wt make the angular 

displacement of the trial function 

vanish for all r along the plane of syninetry bv properlv choosing :e. 

T 
Otherwise v * a  , T J   * ,  and no choice of re can make s0 
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vanish at more than an isolated set o£ points.    There are  at   least  two 

ways by which we can  improve matters:    We could use a more complex 

trial  function which acknowledges body-wave contributions  to the dif- 

fracted  field,  or,  since the residual  displacement sQ  is  explicitly 

known, we can use   it  as  the aperture   illumination of  a Green's  theorem 

type calculation to correct  the variational  estimate. 

However,   the practical  seismic  interest   is   In  the realm of  small discon- 

tinuities,  and  for this case we shall  sue that   the elementary trial 

function yields satisfactory results. 

b. Definition of the scalar product 

While there are many guages by which sQ can be minimized, we shall 

T 
choose a  c    which minimizes  sf.   in the mean square sense.     For this  pur- 

e u 

pose,  let us define the complex scalar product of two functions uU,0) 

and vlr,6)   to be 

(1.26) (u,v)   3        uU.O)   v  (r,ü)   dr, 
o 

where  the   integration  is  to be carried out  alonn the  plane of  symmetry 

O .  (J5./2 -n.   To each complex function nU.O)  wc can attach a  positive 

definite number,  the norm of u or  || u  || which  is defined to be Au.u). 

The norro  || u  || depends on  the wed^c angle,  and   is  to b(.-  distinguished 

from u'  -  (u,u )  which  Is   In general   complex. 

c.  The Even Subsidiary Reflection Coefficient 

With this  notation,   the mean square value of  the  angular dis- 

T 
placement  of  the  trijl   Lunction s0   ib 

ii    Tii2      f  inc ,   inc.*       inc ,   Inc.*" 
KH     =CS0       '  '"e  CSG     ^  S

ö     f  -e  (S0     )  ., (1.27) 



lu- 

and  ibis \i'.\\  be a   ..iui-.n-.i.  li  u.ij  only   if   .     is  ch^a-jn  ..J 

.   (0/2.M 
!kncN 

.  -i   ^ 
(l.2b) 

or explicitly   ii> lenas ot   ito), 9(0J   «mi .", 

(0/2.-J 

1       £• ■ 
2f4   .06 

•Z 
i   _   2 1 ■  ,   <»>_ 

O+T 
*       .»0 

•    . •>.   .1 
. -1 -1'      . r       üQ     ; / aoM 

*     *   >'   '    •        ..Q * \.dQ.'\ 

*,1.29) 

d.   Ihu C-dd  iubsidiary i<ut Iciit luti Cocti   c icni 

li  uc use an iin.ilu^uub  inai   lunciion.  .uid  similar  reasoning 

wu  tmd ihi»L   if  .     is  ■■' be an opi imal  cluicc wc   let-d make the  selec- 
o 

11 or. 

(0/2.-J r  

11 ^rii2 
(. I . u . 

>T 

(0/2.-)   - 
v^/ 

12    :'2  0. -'   > , 

. H-'- JI MiL. ZIIi 
hi2      -'  t   I2     r  * 
1 <•/ .  • • 

U    -): 

3, Dlscus?i 311    '.  '       jv.-:ral 1_ ref lb :i t J-    ä.id. cr^r--iss ■ .n  -oet t idem: 
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Figure 2: The diffraction coefficients R and T for a trial function con- 

sisting of but an incident and reflected wave.  In this case, 

Poisson's ratio 7 ■ 1/4. 



With an explicit .-    and r    at   our disposal, wc can evaluate r e o 

the R(^,c)   and T(%,-)  germane  to our elementary trial   [unction.    For 

reference,  their complex variation  is  plotted as a function of  the dis- 

continuity angled-n.   in Figure  2 for Poisson's ratio   ■ =  1/4.    The 

present magnitudes   |T|   are  somewhat  smalls        .•■  thai   given by earlier 

first-order calculations   (Kane  and Spence  llr .   .   -hieh do not  simul- 

taneously yield R and T.     Since we evaluate both R  and T together, we 

must,   in effect, withdraw some energy from the  transmitted  field to 

allow for the  reflected wave.     Furthermore.   .'   is  the nature  of  the 

variatlonal   technique  to underestimate  the  3ubsidiary diffraction 

coefficients r    and o    since  it  only yields their projection  in the 
e o 

sub-space spanned by the trial   function. 

Although the analysis   is  certainly valid  for a small  enough 

discontinuity  in wedge angle, the utility of  the procedure can not  be 

established until   there   is some estimate of   the errors  coamittcd.    A 

feature of  the present  procedure  Is that   it suggests  a natural  guage 

of  the accuracy.    While D    and co are so chosen that   || .s0  || and  || sr  || 

arc minimized, both ^ and sj arc non-zero along the  aperture  plane. 

These residuals, which are explicitly known,  can not   he  farther  re- 

duced without   introducing new  features  such as  body wave    -ntribuiions 

into the  analysis.    Since [l-|R|2-|T|2]  represent,  iba.   traction of 

energy unaccounted  for, we  can estimate the need  for   improving the 

calculations by examining this quantity 
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This error estimate   is  a very senerous  one because  only part  of  it 

implies higher-order corrections  to R and T,  the   reinainder  representing 

energy which  is accounted  for by i<-wave  to body wave conversion.    The 

data of  Figure  2 shows  that   if   l^-"!  •    lü  ,   the  present  analysis 

accounts  for at   least  92 percent  of  the energy,   and  therefore  the theory 

should not  require  further  improvement within this  range.    We can also 

compare the present  theory with experiment, but we must be very careful 

if we do so, because there are  fundamental distinctions between analysis 

in the harmonic domain and pulse measurements  Ccf.  Appendix). 
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1'ART  IL:     LOVE WAVES UN AN ELASTIC  WF.lJCE 

I.   Introduction 

A  layered solid can suppori suriace waves which .ire  -i  i   / m- i 

polarized shear waves trapped   in the superfic! i!   l.iyer« 

Since these Love waves,  as  they are known, have  n    ■oniprt.-ss tonal  com- 

ponent,   it   is not  necessary to  inlrüduce potentials,  and   it   is  possible 

to work directly with one scalar function w(x,y),  the z-component  of 

the displacement vector 

s - [ü, u, w(x.y)]. (2.1) 

Within the E    layer, w satisfies the wave equation 

(V2  ♦ k2) wU,y)   -0. k* -  ^r^Mj, (2.2) 

and within the E substrate, w obeys 

(V2 ♦ k2) w(x,y) • u. k2 - '2r2/u2.      (2.1> 

At the  free surface of E.,  the stress dyadic 6(s)miist vanish, which 

will bo true provided that the normal  derivative 

^   '   u C2.4) 

vanishes there. 

We assume the Ei-E2 interface to be welded so that the displacement 

and normal stress must bt continuous across this boundary. Along wedge 

face A, these conditions will be satisfied provided that the Love 



?! r. 
u 

c p >, 
• 8. ra y o> 

r« • . ai C -< i» /! 
■.•, ^J •0 u. at .-i CJ ii u) .''■ 

j i/i >. 1/1 0) Oil   1   w   U1 • c ? O y Q 

IU ■./"l r-l ■ ■) (« •C ^^ >-' 05 
uP U- O 

. -» 0 w >, -* Cl IU 
(.i ii. Q A ■-' t nr p ai M 
u. O >• •<* a 71  N   >-(  (-' c -' o ii CJ.U. 
i-i CO .-1 ai ui .p 'vi a. « n v ™* ii -t  M 
■n >. < ;• 0 C!   _    '/l   ■--' ji -■ y •.(1 (/I 
■■'1   K • L. t c ai o   < os • m E E • (/> 
-t o a. ri n) nj -i ) u X a /■ n ■o '^ .. 1  id (f u; > 0        Of) I-1 0 r« 

■" 0) 

•o X —' ä: ■o i.. u- :?. u _5 V- il Li 1 H U 
Z  t-' Cl U -■) -« a. < =) Q s a. 1/1 •n Z 

11 

o ?: 
it 
to • 
o ■■> 
ui a 

it: • 

or in 

V. • 

g M ■j o 

r 
u. o 

m -i 
> -t 
< H 
» vi 

li) £ 

< 
oc — 
3 a- 
« 1-- 

u.| 
o S >> 
>■ Ul 
Of. 
O >• 
id m 

S§ 
Ul  M 

< 
ae, 

• u. 

. . -<       »i 

05   0    I 
a.     c  - « 

ri     ui  " 

•    • Q 
■o  «) Id 

ii >■> 
0) u. 
V. I-" 

(/I 
■/) 

< 
ii X) -J 
o c o 
o * :■■. 

r. 

i-   -I* 
c 

Ci x> s 
o I/'. 

01   IT 
■o « 

in  c 
c  - 
ei c 
o j: 

u 
>. n 
»■• i.' 

l 41 
V C 
O ~ 

o i 
c " 
tu 

a) 
• i 

C B 

- ol 
•n ti 
<n c 
" •»' R - 

U)   dl 
— > 

Id 
»"i • » 
H r-i . 
-■ in 
-.-j • ? 
■x. o - 
~t s. — 

zu % 

'■   U!    V 
i." x>   > 
t> c> o 
.11 .4 
V T3 
• ' O    0 
. i u.   C 
.• «a in 
-j x 

•-. x 
1)    I    00 
: «« - 
id 19 at 
J O -" 

ul ^» 
3   ej 

as 
u 

'- Q Q 

O — 
a u 
c» r. 
oj - 

b   O §^i;« U 

41   O   - fl 
V)   >    U ■ •    11    J .o u 

.J          t) u  u  Ii   u 
Cl o  >> o 

^« 
-J   01 U 

>» C -> X 
JO   19 •" •t.    .-i     r   >.* o 

1/1 ^ 
l/> 

o > 

n 

ai £ 
o o 
c w 
M  q 

«c.o 

^     '   « 
►J -T afi 
Q 

•a o 
-J 0) 
< a) u 
(-• c c 
(/> <9 (0 
3 iÄ > 
n:   • -o 
(J -i •£ 

c — 
ft» <" Q 
CO  I Id 
< <-N •-, 

U3 1 >. 
m rg i-i 
.. .r -n 
y —' •/) 

o "* o 
■■ :4 ;■-. 

a. «( •:• 

O  «d 

as • 
U X 
I/) k! 
Id "- 
Q Z 

•n tfi 

61 0) 
c  > u 
O   H >. —* 
" 3 
u 3 B 
fl y '.1 
CD- 0 •/I 

'S e f- 
a. m ■n ■o 
0 - V 

0 a 
C Id 
01 •' 
r^lii 
•e -< 

m 
• •/» 

^5 
■-  -1 'j  i: -< u 

Ot >/) 'ft   U        56 
c   • :J 

r. 
■. 

'■ 
• ■ 

-. > < 
« < H 

i 3 n 
-J        3 
ae ul a: 
o o o 
lb -c 
•C u. u 

an - 
• ui .v. 

O m hi 

ii< ^j 

0.>' '/» 

• td » 
in x 
in (•■ ü 
i«      O 

;•: td M 
- T: I-i 

(-' o 
<I 
K 

• Ü. 
c- u 

-    I  (d 

- 
-3 
la 
Q 
O 
•s 

. 1 

.r. 
<l 
i. 
q 
u 
i/-, 
ii 

a: 

1) 
HO 
i-i 

,a 

I 
o 

a 
a. 
ui 

• a 
•n id 

>M »•■* 
0) li. 
u >-( 

in 
T> '/> 

c u 
-a 7; 

01 n 
-a u 
— 3 
in cr 
c - 
O c 
Ü X 

y 
>. 0) 
1.    VI 
u 
ii — 
II 2 
^. o 
it — 

II 

h' 

o 

•a 
a) 

CO   I 

•-' z 
H 

L:  - 

u -II 
u    IJ. 

Ul     QJ   ^H   M   M 
Q    ' 

l-l 
u 
o 
o, 
(U 

a a: 

«  :■ 

3 
■o 

>. c 
en   TI 

n 
' I» 
•3   " 

y 
t; -a 
'1   u 
•• in 
II :. 
U C 
H 
h -o 

iu   .1. 

■a x 
n 

ai   I 
> y 

u y 

i 
3 

01 

B 
..J 

c 
T 

r. 
DO 

-;   i-   1.1   u 

o  «i 
ai  u 

ill   o) 

u s u o 
o  >• o x 
i-i    o  'n   QJ j 

01 
Ü ü • & u > 

3 (U ra o a. 
■ • 0 01 C in m • X O 1/1 ir. 01 in Q 01 01 >. 

n '/i 55 in • <U 00 i W i/i • c > y y a 

lu, C/l M •") a < •—\ M as —i o CO >^ iM ga Q 00 Ui O 10 ■■M 3 0D t In o > 'i ü in CM h-l H c u O 00 Ui 
H .-c J 01 u vO m Qi < 10 u —i 01 •< M 
IA >< < 0) 0 •j ^-^ in M or 0 in tn 
in os > f- s c 01 a < as ■ 10 e E • "J 

31 
bu m 18 •l-l —' J u X a in in ■v IM «i 
u, 3 * > o u m u 0 .pi c J 
l-l 06 « ■o u Ui z Ul 10 u 01 01 E M O 

Z H Q U -1 «t cu < 3 Q £ a, 1/1 m C z 
SJ < • 3 • • • • X 

►-i -1 ►-I 
i-i 

> y 
01 

I-I H 

in 

a> i/. T3 
-    I Id J f- C 1 01 in 
u n :> 2 • as o i c C u 01 01 
C -O i: (-■- n. O .— 01 0 o —i > 
u     I ^ i/i a. u i-i y <0 y <0 
RI -J 3 o m U) ifl u c 10 3 
w- CC Ul OS n OS u - •o X o u 
o o u u IM Cl in c 0 ^■ in 01 
X- bi t: MM p • a ■o 01 10 u X 8 IS «t: ha u u C1 in Ul 3 01 y o 
J ae »-I C   Nf> ■n •-I ■/I c- • u 10 j • 3 OS 01 01 Ui c ■— c <e u •a 
X   O l/l H u ki ►J o c 0 IU s. ■o 
o z y Ü ■yi y X ■-■ « IU c 
h u. ■? m cr- m y in u — 18 18 
IS    • o 5^ o 3 >> 01 m c ■v X 
01  u >> u •v k. u •<-• 01 in £ 
in o >■ 1/1 • u c o u E — 01 i tf 
o) m oe i/i O <3 z j ■M m y > 01 — 

cc,   • 8 >• Ul 3 n c .— 0 0D 01 
Ul to ►-I • » 

>- 
c a «J 3 O •H 

0) ui X H ^1 • o i- 'w a >• 
«1  •/! s- Ä »-I ■n •/) MM u 8 y 3 o • 
!2 5 o jj? • 3 u — OS c 

ld l-l 0 —4 VM •9 » o u u 0 
u   •> re H M z PH o v« c m .-i X —* 
x -o H u (_i — W 0 c (0 IM u M 
E  u v u 01 m M4 o -^ U 0 <9 
ig  o QJ Q u • in > u •H 01 01 X u 
U U4 • u« U 0 '-« 3 y in P •M 

■o 3. Ui VI a o •o 01 IM IM p u y 

iu   4) 
< en 

_l l-l -M 01 c >^ C 01 o >> 0 X 
r^ Q Q as a n ■" > IM •/I 'U 01 

1 

0) X 
y y • e u >* 

3 01   3   y 'T 
S. o c — •        • 

• Z <-> in  uv   «1 r^ Q 
a «n >- in • oi oc • td <n 
id      in •-' ~» os •< -- -^ as 
-■ u,     a 00 u- o 
u. o :■• ■« 13   in «M «a I-i 

01  u vO in 9u —      =i -J 
tn ><      < 01   U    J   --   /l   -^ 
in as   • H c c oi <;» •< as 

a o —i— -J o ^ o u. m 
J Ul bu 3 ^ > o      o m 
o x >-■ ee •   O   U U.  Z Ul 
Z H Q <.> -i < n. •« 3 a 

"1 
1/1       «I 
V        01   >> 

• c >      y y a 
-i o « >»— c ui 
« - 3 oo > « ö 
eo ob eou< 
< <9 y -i oi •( i^ 

eo -•■ o tn     in 
• ■SEE • n 

X o. «i -n -o •" -t 
_, o - - a c -1 
•« ki v oi i M u 
Z 3. tn «n C      z 

•«   • 3 

L 

11 l-l 
« l-l 

l-l 

• 
in 
01 n T» 
-  i id .J H c ■    01 n 
v. n > < • o 1 C   C u  01  01 
o e -« H a, 2 — 01 O   - a - > 
M   i 3 'n l-l I. y a» U   13 
a -i      3 o n Ul <s U gs9 
k< as id as - ri as IM • o X 
o U <J u in 01 •n c 0 -   U)   01 
c u- < .    * • n ■a 01 IS u X  > 

y o 6 IS < u. u ■. « ■n ui 3 0) 
_i      os -' c o u i-i ■n tr •   u IS        .J 

•  3 OS u « u. c c <s M -o 
x o m p - u ki —i 0 c 0 141    01 "O 

•u a c 0 Ä        Id 
■-       Ui 1 
IS   • o z 

(i   oi '0 :> X — •/) 
m x J- in y m u —   IS   IS 

o J > ai •/» c •o x _ 
01  u        >• u •o k. u -   01 ■" •& 
lit    O. >i  'O • y c o u E - 0)    ■    00 
oi ns as in o «0 z 4! »M ui y >   41   - 

OS     • o >< U) t-l IS c — is no ai 
• Ul  CO M      • • P c IS   'M 3 -o -i 

oi   n x H  N • ^ o k-  IM 
y 5 is M m H z 

-o   <8       O 
M •n in .-4 U    g • 
3    • ■j u as c 

- Z Ul ►-< Z   O 'U 10 • y u y 0 
U    • X H i-l Z -H o — c U)    •-' X '-4 

X  -O  H  U H « kl o c IS   U  iJ u 
E  ki      < z w 
is o      os o w , 01 

in 
10 
> 
-   O 
M    MM 

-<    M    0 
ai oi x 

IS 
u 

(J   IM       •  Ul U  o -H 3 y ui P H 

-o O» u. m a u •o 01     kl ki   g   M y 

Ui   01 -i •-< M   oi c > c -,   01 O   >. O X 
< oa r- Q a as CQ m «-I > IM  in iw 01 



u o a a 
3 
in 

c 
R) 
U 

3 

»i. CO 

■o 
g 

U1 

-3 

4J 
X 
M 

•H 
a) 
x 

£ 

<8 

in       4i 

<g      <a 
M 

0) us — a o 
— a 

w 
0) ai 
v< TO 
3 O 
5)       E 

>u        O 
3 

01 «J 
X 
u >, ~* 
5 g 

«      -       *     ^ 

*      to 

C    55 

o 
CD  LU 
-i^ z: 

< 

CL 

V! 

> 
3 

8 

5 
X 

X 
o 
3 
M 

cr 

UJ 

CO 



-14- 

waves,  or      -i" -waves  of amplitude A,   have the  form 

f-x ~-        i*    X 
A.   coWkf-   --ye'. 0    v      -   H (2.5) 

'1       iJ 

A.a. 
11.   p^ 

/"?       2 '2       2 i 
A.   cosVkf-   r» exiA/X.- k,y e , y - H. 

l I        i I       2 
(.2.6) 

and the propagation constants   •.   are  the  real   r^ta of  the  period ec^ation 

tan V k2_   ,2 H  - —  / "7 

If the shear wave is to be trapped in the layer, or if the Love wave is to 

propagate, we need IkJ s |*. | *-   |k.|. For any thickness however small, 

there is at least one root •. corresponding to an acceptable solution — 

the fundanicntal ^.-wave. As the acoustic thickness k.H increases, other 

qiodes can propagate.  In our discussion, we shall assume that the thickness 

is such that only two modes propagate, the fundanenial. and one harmonic', 

the P.- wave with a propagation constant • . The anülysia proceeds in a 

similar fashion if an arbitrary number of modes can propagate. 

2. Formulaliun of the buundary v.ilst; problem 

He assume that an Ö.- wave is incident along one tdc^- -'i »symmetrically 

layered wedge. At the discontinuity, four surface wavc^ will be excited: 

A reflected and transmitted •' - wave with amplitude cuellicients R  and T^ 

respectively, and reHectäd and transmitted Ö waves whose amplitudes are 

the conversion coef£icn.nis R  and T^ respectively. Uur task will be 

to determine these diffraction coefficients as functions of the wedge 

angle'^ the layer thickness H, and the elastic constants r j, c.^, MJ , n,,. 
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By the sa:ne argument as in Fart I, we can add and subtract a symmetric 

J".-excitation on the right wedge face which leads us to consider a pair of 

even and odd problems in a bisected wedge.  Since Love wave diffraction 

is a scalar problem, the subsidiary boundary conditions along the aperture 

or plane of symmetry are simply 

EVEN:  - |r - 0, u • (9/2 - n       (2.8) 
r OH 

0/ ÜDD:      w - U. 0 » 072 - n       (2.9) 

for the even and odd problems. The trial function will consist of an 

incident X.-wove, and reflected f.  and X_-waves, with unknown ampli- 

tudes.  If we denote the subsidiary reflection and conversion coefficient 

for the even problem in the bisected wedge as r^. and r^,, and similarly 

0     ü 
r^j and r.^ for the odd problem, then the desired maj'r coefficients 

are 

Rii " ^ (rn * rn\ (2.io) 

Ri2 ■ ^ U!2 * 'iV) "•"J 

Tll " V (rll ' rllS (2.12) 

T 1  /  ß        Ox 
T12 " ^ (r12 - r)2)' U'W 

As in Part 1, we shall determine these coefficients by a variational pro- 

cedure which ignores body wave contributions. 
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3.  Solution 

In the odd  problem we sha!I chuose  r?.  and r"    so that  the  residual  variation 

•:(r)   aioav, the  aperture  plane 

(r)   - Q     ♦  r
ü    i«"   ♦ rU, **, f   -   fc})/2  -  n U.1A) 

is as small as possible in the mean square »•-        i the same 

definition of scalar product as in Hart I, wv huv«. 

II^Df-Cü^^ll^r^^Q^r;,«;*^^).    (2.15) 

O       O     . e 
and this expression will be a minimum if and .-.ily it r^  and r12 satisty 

the normal equations 

'W   #rll  (^S-l)  fr?2lfl*2' V  ■"' 

^i'V *rn(V,i'V tri2(0*2'V "ü' 

Equations (2.16)  and 12.17)  can  inmcdi.iicly be   .*   ved  for r,,  and r12 

(2.16) 

(2.17) 

II DET0 

and 

12 ÜET 

(ü^ö,)     iV,.^) 

(V Ö2)   ^2' t'2, 

v
 r   r     i ■   i 

(0,. V («r V 

(2.IB) 

12.19) 
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DET 
(0 '  )   ii'      '■•  ) 

1' 12'     1 

>. * 
(9 \> )   (V   .  t'   > 

1' 2         2"     2 

(2.20) 

In the same  fashion,   for the even probleir. wc   ^-J  odoose r. .   and r.. as 

1l       DETe 

.idö,   i^'r-i^    I'^i 
Vj do   '  r -to .      r 00     '   r .'0 y 

n !!i i !!i   i Üi   iZr 
^ r JO   '   r '»ß •  vr <)0   '     r 'lü 

(2.21) 

and 

12      DETC 

whe rc 

DEr 

afi iÜi ri^i ii 
\j JO   "  r ''0 .      r .10   '   r .tu • 

r o0   * 7 «»0 • Vr o0   '   r .«0 / 

do oil 
111      2s ^2   .dC,r 

Vr '»0   '  r o0 ^     r 00   '   r 00 

(2.22) 

12.23) 

With this  knowledge,   the  rellcction,  transmission   uui    un/trslon  coefficients 

are given by (2.IO)   -   '2.13). 
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C.  Discussion ü£  the results 

1. Numerical Data 

We have used  the preceedm.;  lomwlas  tu calculate the diffraction 

ooefficients  lor an E -layer and t.-substrate  tor which k.'k.,3   1.297 

and \i In.*  2.l''9.     The phase  and  »"rcup velocities   for this  case have 

been given by Stonely and  are available  in   i  i   .I-U'T-C«   reference  lp.213, 

Ewini«, Jardetsky,  and Press).    Ki^ures *  ihr<nj.;h  •   illustrate the varia- 

tion of the magnitude    f  the diffraction coefficients which arc even 

functions  of  the discontinuity aiu-.lc ♦^'-".     The  curves  are   indexed by 

four values  of  the dirnension less  parameter     .11, namely  i,6,7,8;   if 

•II -  ü,  then the second niode   is   jusi   above  cut-otf,   and   if      11 • 8, 

the  third mode   is  jusi  bcl<v  .-i.t-wsf.     1»   i^ vcrv   mierchting to note 

that  the  conver>:oti cocfficieni   1       exceeds   the  reflection  coefficient 

That   !i,   there   is   i  iciulcr.  v  :   r  ! he  energy  ti   junt muc  lo  propagate   in 

the  same direcii'm even   .:    ü  nccess Halts   i  tran-acr   ■:      «lal   charac- 

ter ist ics. 

2. Interpret ation 

If wc  compare  any two waves  of   identical    t.it i-< er ist ic».  then 

their  relative energy  is  proport i ■nil   •> o '.he   ahv t:-\f   ■'|i;arc  of  any 

correspond in»; a-r.pl i; ide.     «"ti  •',■>■      • n. i   h.im!.   ;« :   i ■   w«      IM    .«iparc the 

energy  tn  the   fundamental   J"  -w.iv.   i,   Oiat   of   an T.-u.i--      us   lirsi  har- 

monic,  wc need make  sune   further  calculations.    Wt-r   i-    in.-.i   m generality, 

let  us  specialize  > vn   du. •■S.H.U IC, the hon? mi ,i    ■»••■:.>   f.ice  for which 

the J".-waves  are  giver <    .'nitlv by  (2.'))   .md   (2.6),   and evaluate  the 
i 

scalar  product   aloin   'hi.  wnvefront   y ■ U.    Thus   |A   |   || /   [j *■   represents 
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Figure 4: The magnitude of the Love wave diffractior coefficients for 

>..H - 3.; they are even functions of the discontinuity angle 

O- "• In  this case k2/kl - 1.297, n /p. ■ 2.159; the normal- 

ization value N ■ 2.U. 

Figure 5: The magnitude uf the Love wave diffraction coefficients for 

\.H - 6.; they m; even functions of the discontinuity angle 

^7- n.  In this case l^/kj - 1.297, n^ - 2.! 59; the normal- 

ization value N " 1.2. 

Figure 6: The magnitude of the Love wave diffraction coefficients for 

•jll • 7.; they are ever functions of the discontinuity angle 

^►- ti.  In this case l^/kj • 1.297. n,/^, " 2.1J9; the normal- 

ization value N • 1.1. 

Figure 7: The magnitude of the Love wave diffraction coefficient-i for 

■.H » 8.; they are cvei functions of the discontinuity angle 

0-11.     In this case k^^ - 1.297, n /..    - 2.139; th donrnil- 

izat ion v.ilue N - 1.0. 
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the mean square energy flux transported by an J'.-wave of  amplitude A.. 

If we denote the group velocity of an X^wave as   ',   'l   follows that  the 

ratio 

lAjV^   || X 

A.l2-      II X.   II2 
]_!!_ (2.2A) 

compares the power flow oi  an A X -wave to an A^i^-wave.     In particular, 

a mode near cut-off behaves  like an unbounded plane wave  in the l^-medium; 

hence such a wave can carry large amounts of power even  if  its amplitude 

is deceptively small.    As a result,  if we an.- to discuss power transfer, 

we should renorroalizc the amplitudes of the conversion coefficients 

R
N
    . Vtt rN    • NT 12.25) R|2      ^^ 12 12 

where 

1   II £,   II 

so that   |R^|2 and  iT'.-j     •'rc proportional  t>   the power transferred bv 

the diffraction of a X.-wave of unit amplitude   ■•    i wedge discontinuity. 

The appropriate values of S for the previous nuir.encal  example are 

cited  In the captions of Figures '• - 7. 

In a  fashion similar to the error analysis  oi   I'art   I.  the function 

[l-|R     |2-|RNJ2-|Tii|2-lr'i2|2-'  '■«-'Presents  the amounl    •!   ambiguous 

energy.    These values are n-.ore satisfactory  in the present analysis 

than   in  Hart   I",   this can  be explained by the  fact  that  we have  a more 

flexible trial   fund ton  ■> mcc we can vary the coefficients of  two 

reflected modes. 



APPENDIX 

Love wave diffraction coefficients would be very difficult to 

measure in the laboratory, but the techniques of two-dimensional model 

seismology offer a means of determining Rayleigh wave reflection and 

transmission coefficients with an accuracy of about 10-20 per cent. 

The present theory and experiment agree if s3 ~  "i but outside this 

range, there are experimental features which <ire not duplicated by the 

results of the present elementary variatlonal procedure. The analy- 

sis In the harmonic domain could be refined by employing various 

devices to reduce the amount of unexplained energy,  buch calculations 

would probably require substantial effort, and the idealized formula- 

tion of the present problem should be reviewed if the labor »s to have 

relevance to pulse measurements. 

There are major distinctions between analysis in the harmonic 

and time domain. For example, whereas a harmonic Rayleigh wave is a 

uniquely defined entity, Fnedlandcr (1%8) has pointed out that a 

Rayleigh pulse can assume a variety of waveforms. Furthermore, any 

Rayleigh pulse can not have a sharply defined wave-front, and theoreti- 

cally must give infinite advance notice of its arrival, unless it 

merges continuously with a precursor, typically the shear psuodo-surface 

wave (Cagnlard 1939). Although the amplitude of this she.ir wave decays 

With distance, tta integrated flux remains constant. It is difficult 
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Fieure 8: The rliffraction coefficients R and T for a trial function 

consisting of an incident and reflected Rayleigh wave. How- 

ever, the shear coefficient '.'  of the incident Rayleigh wave 

has been incremented by a factor (1 + cos '€?' + cos "A).  In 

this case, i'iisson's ratio a = 1/4. 
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to separate the far-£ield effects due to the arrival of a Rayleigh pulse 

and its shear companion at the second wedge face.  In other words, in 

addition to Rayleigh/Rayleigh interactions, there will be some shear/Rayleigh 

conversions. What contributions might this shear wave introduce? Whereas 

we can not give a rigorous answer to this question, we can however make a 

rough, but simple, estimate. 

We first note that if the wedge angle ^is n or "/2, then we 

would expect little or no shear/Rayleigh conversion.  In the first case, 

there is no discontinuity, and the second case corresponds to a geometry 

for which the shear wave is essentially normal to the second wedge face, 

and we know that for normal incidence, a shear wave is reflected as a 

shear wave. Then, from Equation 11.6), ue note that we can easily add 

some additional shear potential to the original excitation by increment in« 

the Rayleigh wave's shear coefficient '.'  by an additional contribution 

i(^y)  depending on the wedge angle 

"* —[ 1 • f (•?•)] 

yuite arbitrarily, we have chosen 

f t«^)) - cosf* + cos2^* 

whose sole merit is that it is the simplest function ue coold think of 

that vanishes for^/» n, n/2.  It is then a trivial mailer to repeat 

the calculations appropriate for Figure 2, and the results are plotted 

in Figure 8. The sh.)dc<; area indicates the range of experimental points 
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as measured by Knopoff and Cani;i(1960 , deBremaeckerU958) . and 

Viktaruv, (1958).  Of course there is limited justitication for this 

heuristic procedure, but it is remarkable that with this naive device 

the coefficients R and T adopt many of the characteristics of the 

experimental data.  In any event, we conclude tlut more refined calcu- 

lations should use a more realistic excitation. 
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